Effective C++ Third Edition 55 SpecilieriVagshtotepiitase af aur iBriogpéenseaeldEl asigms sepTeihmo @hlEomposition

& FREYV < Day Day Up > NEXT @ |

Item 38: Model "has-a" or "is-implemented-in-terms-of" through composition

Composition is the relationship between types that arises when objects of one type contain objects of another type. For
example:

class Address { ... }; // where someone lives

class PhoneNumber { ... };

class Person {

public:

private:
std: :string name; // composed object
Address address; // ditto
PhoneNumber voiceNumber; // ditto
PhoneNumber faxNumber; // ditto

In this example, Person objects are composed of string, Address, and PhoneNumber objects. Among
programmers, the term composition has lots of synonyms. It's also known as layering, containment, aggregation, and
embedding.

Item 32 explains that public inheritance means "is-a." Composition has a meaning, too. Actually, it has two meanings.
Composition means either "has-a" or "is-implemented-in-terms-of." That's because you are dealing with two different
domains in your software. Some objects in your programs correspond to things in the world you are modeling, e.g.,
people, vehicles, video frames, etc. Such objects are part of the application domain. Other objects are purely
implementation artifacts, e.g., buffers, mutexes, search trees, etc. These kinds of objects correspond to your software's
implementation domain. When composition occurs between objects in the application domain, it expresses a has-a
relationship. When it occurs in the implementation domain, it expresses an is-implemented-in-terms-of relationship.

The Person class above demonstrates the has-a relationship. A Person object has a name, an address, and voice and
fax telephone numbers. You wouldn't say that a person is a name or that a person is an address. You would say that a
person has a name and 4as an address. Most people have little difficulty with this distinction, so confusion between the
roles of is-a and has-a is relatively rare.

Somewhat more troublesome is the difference between is-a and is-implemented-in-terms-of. For example, suppose you
need a template for classes representing fairly small sets of objects, i.e., collections without duplicates. Because reuse is
a wonderful thing, your first instinct is to employ the standard library's set template. Why write a new template when
you can use one that's already been written?

Unfortunately, set implementations typically incur an overhead of three pointers per element. This is because sets are
usually implemented as balanced search trees, something that allows them to guarantee logarithmic-time lookups,
insertions, and erasures. When speed is more important than space, this is a reasonable design, but it turns out that for

213 /353




Effective C++ Third Edition 55 SpecilieriVagshtotepiitase af aur iBriogpéenseaeldEl asigms sepTeihmo @hlEomposition

your application, space is more important than speed. The standard library's set thus offers the wrong trade-off for
you. It seems you'll need to write your own template after all.

Still, reuse is a wonderful thing. Being the data structure maven you are, you know that of the many choices for
implementing sets, one is to use linked lists. You also know that the standard C++ library has a 11 st template, so you
decide to (re)use it.

In particular, you decide to have your nascent Set template inherit from 11ist. That is, Set<T> will inherit from
1ist<T>. After all, in your implementation, a Set object will in fact be a 11 st object. You thus declare your Set
template like this:

template<typename T> // the wrong way to use list for Set

class Set: public std::1ist<T> { ... };

Everything may seem fine at this point, but in fact there is something quite wrong, As Item 32 explains, if D is-a B,
everything true of B is also true of D. However, a 11ist object may contain duplicates, so if the value 3051 is inserted
into a 1ist<int> twice, that list will contain two copies of 3051. In contrast, a Set may not contain duplicates, so if
the value 3051 is inserted into a Set<int> twice, the set contains only one copy of the value. It is thus untrue that a
Set is-a 1ist, because some of the things that are true for 1ist objects are not true for Set objects.

Because the relationship between these two classes isn't is-a, public inheritance is the wrong way to model that
relationship. The right way is to realize that a Set object can be implemented in terms of a 1ist object:
template<class T> // the right way to use list for Set
class Set {

public:

bool member (const T& item) const;

void insert (const T& item);

void remove (const T& item) ;

std::size t size() const;
private:
std: :1ist<T> rep; // representation for Set data

b

Set's member functions can lean heavily on functionality already offered by 11ist and other parts of the standard
library, so the implementation is straightforward, as long as you're familiar with the basics of programming with the STL:

template<typename T>

bool Set<T>::member (const T& item) const

214 /353



Effective C++ Third Edition 55 SpecilieriVagshtotepiitase af aur iBriogpéenseaeldEl asigms sepTeihmo @hlEomposition

return std::find(rep.begin(), rep.end(), item) != rep.end();
}
template<typename T>
void Set<T>::insert(const T& item)
{
if (!member (item)) rep.push back(item);
}
template<typename T>
void Set<T>::remove (const T& item)

{

typename std::1ist<T>::iterator it = // see Item 42 for info on
std::find(rep.begin(), rep.end(), item); // "typename" here
if (it !'= rep.end()) rep.erase(it);

}
template<typename T>

std::size t Set<T>::size() const

{

return rep.size();

These functions are simple enough that they make reasonable candidates for inlining, though I know you'd want to
review the discussion in Item 30 before making any firm inlining decisions.

One can argue that Set's interface would be more in accord with Item 18's admonition to design interfaces that are easy
to use correctly and hard to use incorrectly if it followed the STL container conventions, but following those

conventions here would require adding a lot of stuff to Set that would obscure the relationship between it and 1ist.
Since that relationship is the point of this Item, we'll trade STL compatibility for pedagogical clarity. Besides, nits about
Set's interface shouldn't overshadow what's indisputably right about Set: the relationship between it and 1ist. That
relationship is not is-a (though it initially looked like it might be), it's is-implemented-in-terms-of.

Things to Remember
e Composition has meanings completely different from that of public inheritance.

e In the application domain, composition means has-a. In the implementation domain, it means is-
implemented-in-terms-of.

X ne<T o |

215/ 353






